
%title:	OLUG.org	August	2nd,	2022	%author:	Aaron	Grothe	&	Matt	Payne	%date:	2022-08-02

->	CLI	is	Hard	<-
In	the	terminal,	the	command	line	interface,	things	are	hard.
1.	 Don't	know	your	location	(pwd	==	print	working	directory)
2.	 cd	new_location	==	goes	to	new_location

1.	 Absolute	paths	start	with	/
2.	 Relative	paths	do	not	start	with	/
3.	 .	is	the	current	directory	and	..	is	the	parent	directory

3.	 cd	-	==	goes	to	the	previous	location

Things	are	hard,	until	you	are	used	to	it.
1.	 you	can	not	use	your	mouse
2.	 Arrow	keys	help
3.	 CTRL-R	reverse	searches	the	history.	Also	the	history	command.
4.	 Result	code:	echo	$?	(0	is	good,	not	zero	is	bad)

->	CLI	power	tools	<-
1.	 redirection
2.	 pipes
3.	 find
4.	 grep,	egrep,	git	grep
5.	 xargs
6.	 for	loops
7.	 job	controls
8.	 environment	variables

1.	 source	script.sh	#	notes	about	fork	&	exec
9.	 sed	&	awk

->	CLI	power	tools:	Redirection	<-
redirection	-	combine	commands	and	files

1.	 >	Send	standard	out	(stdout)	to	a	file
1.	 w	>	w.ouput

2.	 >>	Append	standard	out	(stdout)	to	a	file
1.	 uptime	>>	uptime.ouput

3.	 <	Take	standard	in	(stdin)	to	a	file
1.	 tidy	-i	-xml	<	some-badly-formatted.xml

->	CLI	power	tools:	Pipes	<-
pipes	-	combine	commands	1.	cat	filename	|	nl	#	Number	the	lines	of	a	file	2.	cat	filename	|	grep	-i	aaron	|	nl	#
Number	lines	that	contain	Aaron	(-i	is	case	insensitive)

->	CLI	power	tools:	find	<-
find	-	Walk	directory	trees	and	output	files	&	directories	1.	find	.	#	print	'em	all!	2.	find	.	-type	f	#	Just	print	regular
files	(no	directories)

->	CLI	power	tools:	environment	grep	etc	<-
egrep,	git	grep	1.	extended	grep	handles	regular	expressions	1.	find	.	-type	f	|	egrep	-i	'java|kt|ts'	|	nl	#	print	files
with	java	or	kt	or	ts	in	their	names	2.	git	grep	-	like	grep	but	only	search	files	being	tracked	by	git	1.	git	grep	-i
repository	*.java	#	search	java	files	for	repository

->	CLI	power	tools:	xargs	<-
xargs	-	Flip	stdin	to	parameters

Also,	sometimes,	useful	when	you	hit	the	limit	of	the	#	of	command	line	parameters...

ps	-ef	|	grep	runaway	|	awk	'	{	print	$2	}'	|	xargs	kill	#	kill	runaway	process

->	CLI	poser	tools:	for	loop	<-
When	you	want	to	build	up	what	you're	doing	1.	Confirm	what	you're	getting	2.	Then	put	the	action	into	the	loop

->	#	The	most	BASH	Matt	ever	writes	<-

for	f	in	`find	.	-type	f	|	egrep	-i	'something|otherthing'`	do	echo	$f	cp	$f	${HOME}/some/place/else	done

->	CLI	power	tools:	job	control	<-
job	control	do	things	in	the	background	and	then	bring	it	into	the	foreground

1.	 CTRL-Z	#	put	the	current	jobs	into	the	background.	Suspends	it	too
2.	 jobs	#	List	the	jobs
3.	 bg	%2	#	Run	job	two	in	the	background
4.	 fg	OR	fg	%1	#	Bring	job	one	into	the	foreground

->	CLI	power	tools:	environment	variables	<-
environment	variables	-	Global	variables	that	can't	be	changed	by	a	child	process

->	CLI	power	tools:	environment	sed	&	awk	<-
1.	 sed	-	Stream	editor,	good	for	editting	very	large	files.	And	quick	CLI	jobs.

1.	 cat	bigfile	|	sed	-e	's/Matt/Matt	Payne/g'	#	Note	the	vi	style	substitution
2.	 Really,	vi	uses	ed	style	substitution

2.	 awk	-	VERY	handy	and	quick	to	learn.	Father	of	PERL	etc.

AWK	command	I	used	at	work	the	other	day

grep	'<testsuite'	*	|	awk	'	{	printf("%s	%s	%s	%s\n",	$(NF-3),	$(NF-2),	$(NF-1),	$NF);	}'	tests="2"	errors="0"	skipped="0"
failures="0">	tests="3"	errors="0"	skipped="0"	failures="0">	tests="1"	errors="0"	skipped="0"	failures="0">	tests="4"
errors="0"	skipped="0"	failures="0">	tests="6"	errors="1"	skipped="0"	failures="0">	tests="9"	errors="0"	skipped="0"
failures="0">

->	Classic	AWK	hello	world	--	word	frequencies
https://jeffsum.com/	to	get	some	random	chatter	-	copy	&	paste	with	cat	>	jeffsum.txt

cat	jeffsum.txt	|	awk	'	{	for	(i=1;	i	<	NF;	i++)	{	w[$i]++;	}	}	END	{	for	(i	in	w)	{	printf("%s	happens	%d	times\n",	i,
w[i]);	}	}'

Not	the	parts	that	1.	Only	run	at	the	BEGIN	of	the	input	(we	don't	have	one)	2.	Run	for	each	line	of	the	input	1.	Notice
that	$1	is	the	first	field	(word	-	splits	on	blanks)	3.	Only	run	at	the	END	of	the	input	(we	use	it	to	dump	the	associative
array)

->	Slide:	References	<-
https://swcarpentry.github.io/shell-novice/

->	CLI	misc	tricks	<-
1.	 export	A=pwd	#	then	use	$A	as	part	of	a	destination
2.	 export	A=$(pwd)	#	then	use	$A	as	part	of	a	destination,	but	passes	bash	lint.
3.	 mkdir	-p	some/big/deep/{part1,part2}/paths/you/{must,want}/to/make
4.	 cd	-	#	Like	the	previous	channel	on	a	remote	control
5.	 the	deal	with	source	script	vs.	./script
6.	 tricks	with	redirecting	and	pipes
7.	 environment	variables	--	what's	to	know	other	than	PATH?

