
Multi-Factor Authentication

OLUG Presentation
January 7, 2025

By Aaron Grothe

Introduction

Passwords alone aren’t enough any more. You should be
using two factor authentication nowadays.

This talk will be about enabling mfa using Google’s
multifactor authenticator software in Linux at both the
local login level and via ssh.

Links are at the end of the talk

Slides are posted at my website
 https://www.grothe.us/presentations

http://www.grothe.us/presentations

Introduction (Continued)

If you have questions/comments please feel free to ask
them anytime. You don't have to hold them until the end of
the talk.

If there are other resources similar to these that you think
might be useful to people please let the group know.

Hopefully this will be an interactive and productive session.

Disclaimer

You can have real issues and can lock yourself out of your
system by setting this up.

Tips

● Have an SSH session already established, then open a
new session so you can undo changes

● Make backups of all the pam.d config files
● Small incremental changes
● Accept you’re going to have issues with this
● Know how to use console if you’re doing it remotely

Types of Authentication

● Something You Know: This typically refers to passwords,
PINs, or secret questions and answers.

● Something You Have: This involves possessing a physical
or virtual object, such as a security token, smart card,
mobile phone, or authentication app.

● Something You Are: This utilizes biometric
characteristics, such as fingerprints, facial recognition,
voice recognition, iris scans, or retinal scans.

Types of Authentication

Something You Know: This typically refers to passwords,
PINs, or secret questions and answers.

Pros: Relatively easy to implement.
Cons: Susceptible to phishing, keylogging, and social
engineering attacks.

Types of Authentication

Something You Have: This involves possessing a physical or
virtual object, such as a security token, smart card, mobile
phone, or authentication app.

Pros: Adds an extra layer of security beyond passwords.
Cons: Can be lost, stolen, or compromised if not properly
secured.

Types of Authentication

Something You Are: This utilizes biometric characteristics,
such as fingerprints, facial recognition, voice recognition,
iris scans, or retinal scans.

Pros: Highly unique and difficult to replicate.
Cons: Can be susceptible to spoofing attacks in some cases.
Also changing it can be very difficult/impossible.

Google Multifactor Authentication

Google’s libpam-google-authenticator is available for most
distros

To install on Ubuntu debian

sudo apt install libpam-google-authenticator

To install on Fedora

sudo dnf install google-authenticator

sudo dnf install qrencode-libs

Google Multifactor Authentication

To install on RHEL/Cloud Linux/Alma, Etc.

Need to install EPEL repos first

sudo dnf install epel-release

Then same as Fedora

sudo dnf install google-authenticator

sudo dnf install qrencode-libs

Setting up Google-Authenticator

$ google-authenticator

Do you want authentication tokens to be time-based (y/n)

-> This controls whether the token is time based. Your
system clock and phone clock needs to be relatively in sync.
You probably want this.

Setting up Google-Authenticator

Your new secret key is: IIC4GBXT3BZA64YCIIV3AZKNZI

Generates QR code and secret key for setting up
authenticator on your phone, device.

QR code is easier

Setting up Google-Authenticator

Enter code from app (-1 to skip): 281151

-> Enter the code from your authenticator app. This syncs
the two devices and confirms they are able to synchronize

Setting up Google-Authenticator

Code confirmed
Your emergency scratch codes are:
 82938582
 31849142
 78882876
 97387681
 42872527

-> Code has been confirmed. Devices are in Sync
-> emergency scratch codes are one time use codes in case
you lose your authenticator or have issues. Each is a one
time use. Save these somewhere.

Setting up Google-Authenticator

Do you want me to update your
"/home/grothe/.google_authenticator" file? (y/n)

-> Save this setup? If you don’t nothing is saved on the
ubuntu box.
-> You want to save the settings probably

Setting up Google-Authenticator

Do you want to disallow multiple uses of the same
authentication
token? This restricts you to one login about every 30s, but
it increases
your chances to notice or even prevent man-in-the-middle
attacks (y/n)

-> Pretty much as described. One thing to keep in mind if
you set this and you have it setup for sudo as well. You will
have to wait 30 seconds after logging in before you can
sudo.

Setting up Google-Authenticator

By default, a new token is generated every 30 seconds by
the mobile app.In order to compensate for possible
time-skew between the client and the server,we allow an
extra token before and after the current time. This allows
for a time skew of up to 30 seconds between authentication
server and client. If you experience problems with poor
time synchronization, you can increase the window from its
default size of 3 permitted codes (one previous code, the
current code, the next code) to 17 permitted codes (the 8
previous codes, the current
code, and the 8 next codes). This will permit for a time
skew of up to 4 minutes between client and server.

Do you want to do so? (y/n)

Setting up Google-Authenticator

-> explains it pretty well. Answer y and it lets you have a
time skew of 4 minutes instead of only 90 seconds. You
probably want “y” for this.

Setting up Google-Authenticator

If the computer that you are logging into isn't hardened
against brute-force login attempts, you can enable
rate-limiting for the authentication module.

By default, this limits attackers to no more than 3 login
attempts every 30s.

Do you want to enable rate-limiting? (y/n)

-> Rate limiting is good. You probably want this by, so “y”

Contents of .google-authenticator
file
grothe@ubuntumfa:~$ cat .google_authenticator
IIC4GBXT3BZA64YCIIV3AZKNZI
" RATE_LIMIT 3 30
" WINDOW_SIZE 17
" DISALLOW_REUSE
" TOTP_AUTH
82938582
31849142
78882876
97387681
42872527

Experiment #1 - Local
Login/Sudo/Ssh
We’ll add the additional factor to the gdm3 login and sudo

cd /etc/pam.d
cp common-auth common-auth.sav

Append to end of file

auth required pam_google_authenticator.so

Reboot system

reboot

Experiment #1 - Local
Login/Sudo/Ssh
Task #1: Login to system, does it ask for Verification code?

Success?

Task #2: Sudo, does it ask for Verification code?

Success?

Task #3: SSH to localhost?

Failure

Experiment #1 - Local
Login/Sudo/Ssh
Why does SSH to localhost fail?

We need to tell the ssh daemon that it needs to ask for the
verification code.

cd /etc/ssh
cp sshd_config sshd_config.sav
vi sshd_config

Experiment #1 - Local
Login/Sudo/Ssh
What do we need to change

Look for the line

KbdInteractiveAuthentication no

Change this to yes. On older systems this might be called

ChallengeResponseAuthentication no

In that case change it to yes

Experiment #1 - Local
Login/Sudo/Ssh
Time to restart the sshd daemon

systemctl restart ssh

Task #3b: SSH to localhost?

Success?

Experiment #1 - Results

So. Is it working? Yes

Experiment #2 - User without
google-auth
Time to create a new user without google-authentication
setup

adduser aaron

Step through options

Setup in groups the same as grothe user

vi /etc/group

Experiment #2 - User without
google-auth
% ssh aaron@localhost

Fails. It asking for the verification code.

Three options

1. Modify the /etc/pam.d/common-auth to allow nullok
2. Setup with a key so doesn’t need google-auth
3. Run google-authenticator for user

Experiment #2 - User without
google-auth
We’ll go with Option #1, and add nullok to common-auth

cd /etc/pam.d
cp common-auth common-auth.sav.sav
vi common-auth

Experiment #2 - User without
google-auth
Change auth required line from

auth required pam_google_authenticator.so

To

auth required pam_google_authenticator.so nullok

Restart sshd

systemctl restart ssh

Experiment #2 - User without
google-auth
Attempt login

% ssh aaron@localhost

Only asks for password, success

Experiment #3 - Only SSH

We’ll reset common-auth

cd /etc/pam.d
cp common-auth.sav common-auth

cp sshd sshd.sav

Experiment #3 - Only SSH

vi sshd

Add following line to the end

auth required pam_google_authenticator.so nullok

Restart ssh

systemctl restart ssh
reboot

Experiment #3 - Only SSH

Login - no verification required

We’ll go ahead and ssh to ourselves

ssh grothe@localhost

It asks for the verification code.

We can also add this line to the sudo and it will force it for
sudo

Experiment #4 - SSH Keys

Generate key for grothe@localhost account

% ssh-keygen

Install ssh-key on localhost

% ssh-copy-id grothe@localhost

Asks for password and verification code

Experiment #4 - SSH Keys

Time to login

% ssh grothe@localhost

No verification code request. Why?

By default - keys in ssh take precedence over passwords

This can be changed, but isn’t perfect.

Experiment #4 - SSH Keys

How to change this?

We’ll go all out. Set it to require the password, the public
key and the verification code

vi /etc/ssh/sshd_config

AuthenticationMethods publickey,password
publickey,keyboard-interactive

Experiment #4 - SSH Keys

Restart the sshd daemon

systemctl restart sshd

Login with verbose so we can see all the information

ssh -v grothe@localhost

Login with public key, password, and verification code

Summary

So we’ve done 4 classes of experiments here

1. Setup for Local login, Sudo
2. User without Google Auth (allowing)
3. SSH only, no local login, no Sudo
4. SSH with public key, password, and verification code

Gives you a bit of an overview of some of the options

Caveats - Display Manager

Display Manager issues

Doesn’t work with a lot of Display managers if you’re using it
for login.

Works with gdm3

Doesn’t work with sddm, lightdm, etc.

You mileage may vary

Caveats - Configuration

How to setup for multiple users?

You can create a basic profile and put it into /etc/skel.
That way when you create users that will be copied by
default

If you do that it will have the same scratch codes, which is
a potential security issue. You can use your provisioning
code to generate different emergency scratch codes

Five Things I Wish I Knew

● Need the right display manager (gdm3), spent quite a bit
of time trying to get this working with kubuntu/ssdm,
kubuntu/gdm3 works fine

● Turning on verbose mode -v to -vvvv with ssh are very
useful to find out what is going on with your connections

● You can’t login via ssh and then jump to sudo right away.
You need to wait for the next code. Don’t know why I
was trying this

● Keep your old ssh session open until you make sure the
new session is working

● Nullok and an account that doesn’t have mfa setup can
save your bacon as well

Would I use it?

This started out as a research project for work about
better locking down our workstations.

It isn’t in our current plans. I do see it possibly being
implemented in the next 6-9 months. Compared to some
other things being considered like usbguard, static kernel
configs and similar options.

Think the risk/reward for this is pretty good.

May flip the NEbraskaCERT webserver to it later this year.

Thank You, Slides and Q&A

Thanks for listening.

Slides are at my website
https://www.grothe.us/presentations

Any Questions?

Links

Linode - 2FA guide

https://www.linode.com/docs/guides/secure-ssh-access-wit
h-2fa/

Ubuntu 2FA guide (bit older)

https://ubuntu.com/tutorials/configure-ssh-2fa#1-overvie
w

https://www.linode.com/docs/guides/secure-ssh-access-with-2fa/
https://www.linode.com/docs/guides/secure-ssh-access-with-2fa/
https://ubuntu.com/tutorials/configure-ssh-2fa#1-overview
https://ubuntu.com/tutorials/configure-ssh-2fa#1-overview

Links

Digital Ocean guide

https://www.digitalocean.com/community/tutorials/how-to-
set-up-multi-factor-authentication-for-ssh-on-ubuntu-18-0
4

https://www.digitalocean.com/community/tutorials/how-to-set-up-multi-factor-authentication-for-ssh-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-multi-factor-authentication-for-ssh-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-set-up-multi-factor-authentication-for-ssh-on-ubuntu-18-04

